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Abstract

Denoising is the task of attempting to remove unwanted noise from
a corrupted signal in order to recover the original signal. We propose
a set of original noise-free images and 195 noisy images along with an
evaluation procedure to be used as a standard to compare the per-
formance of denoising algorithms. The 13 original images were cor-
rupted with additive white Gaussian noise (AWGN), multiplicative
white Gaussian noise (MWGN), and Poisson noise at five different
noise levels in order to create a standard set of 195 noisy images.
For evaluation, each denoising algorithm generates denoised images
from this standard test set of noisy images. Algorithms are evaluated
upon traditional mean squared error (MSE) and peak signal to noise
ratio (PSNR) of the denoised images as well as the Structural SIMi-
larity (SSIM) index, which provides a measurement of the perceptual
visual quality of the images. The standard data set and evaluation
method are provided by a Matlab program called DenoiseLab. The
program, documentation, noisy images, and algorithm evaluation data
for comparison can be downloaded from http://www.stanford.edu/

~slansel/DenoiseLab.
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1 Introduction

Denoising of images is an important problem with real-world applications.
Throughout the last 15 years (and beyond), a large number of algorithms
have been proposed for image denoising. Often authors compare their pro-
posed algorithm to recent state-of-the-art denoising algorithms and claim
comparable or superior performance citing a small number of test images
that possibly were chosen to highlight the advantages of the particular algo-
rithm. With such a large number of algorithms claiming state-of-the-art per-
formance, it is very difficult to understand how the performance of algorithms
will compare on a particular denoising task. This paper proposes a standard
data set and performance evaluation method for comparison of denoising
algorithms, which is available in DenoiseLab, a Matlab software package
that is publicly available online at http://www.stanford.edu/~slansel/

DenoiseLab. DenoiseLab is capable of automatically generating the evalua-
tions from denoised images, loading results from other algorithms, and plot-
ting the evaluation metrics as desired by a user of the DenoiseLab graphical
user interface.

The hope of the standard outlined in this paper is that it will be adopted
by the denoising community and will:

• Aid in comparing algorithm performance on a number of standard test
images containing both AWGN and signal-dependent noise distribu-
tions.

• Offer a simple standard comparison of algorithms by averaging over the
13 original noise-free images to obtain evaluation measurements of an
algorithm for a ’typical image.’

• Encourage the community to evaluate algorithm performance based
upon perceptual quality measures in addition to traditional error mea-
sures.

• Inspire future research and improvements by identifying strengths and
weaknesses of algorithms.

• Enable authors to quickly and easily perform the evaluation and gen-
erate performance plots using DenoiseLab.

2



We hope DenoiseLab will have the same effect on the denoising com-
munity as other standard data sets and evaluation procedures have had on
other research communities. For example, facial recognition research bene-
fitted greatly from the FERET (Face Recognition Technology) standard [7].

Recently, the PSNR of denoised images from the test images from [1] have
been used to compare denoising algorithms. The following papers contain
results that are similar to the above evaluation method but may contain some
different noisy images [2], [3], [4], [5], [6]. This shows that the community is
ready for a standard denoising data set and evaluation method. Our proposed
standard contains many of the same original noise-free images as [1] but also
additional original images and a standard evaluation procedure that is more
comprehensive than the PSNR. We have also chosen all of our images to
have a standard size, 512x512, in order to permit averaging over the images
to obtain a single overall performance evaluation instead of one for each of
the original images.

The remainder of the paper is organized as follows. Section 2 describes the
selection of the original noise-free images. Section 3 outlines the derivation
and motivation of the noisy image. Exactly what information a denoising
algorithm is granted access to is outlined in Section 4. Section 5 introduces
and motivates the perceptual quality measurement, SSIM. Section 6 con-
cludes with the advantages and disadvantages of the proposed standard.

2 Original Noise-Free Images

All images in DenoiseLab are 8 bit grayscale images with 512x512 pixels.
The original images with the exception of fingerprint are natural images
in the sense that they are natural scenes instead of texture images. All of
the original images selected are very commonly used in the image processing
community. The names of the original images are: airplane3 (aka F-16),
barbara3,4,5, boat1,4,5, couple4, elaine1,3, fingerprint4,5, goldhill2,3

(aka hill), lena4, man1, mandrill 2,3 (aka baboon), peppers2,3, stream1,3

(aka bridge), zelda2,3.
The above references give the source(s) of the image in the exact same

form except the man image, which was reduced in size from a 1024x1024
image by taking the average over 4 adjacent pixels. All of these images are
relatively clear and noise-free. This is important because the original image
is assumed to be of perfect quality and for evaluation denoising algorithms
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should not be penalized for removing noise inherent in the original image.
Unfortunately, each image often has several different versions that are

commonly used for research. Variations can result from differences in crop-
ping, zooming, and converting from color to gray scale, and numerical errors
when converting or saving the image again. For example, the barbara2 and
boat2,3 images have two commonly used versions that differ in how they were
obtained from cropping a larger image. Since different versions of an image
will behave differently for denoising tasks, it is difficult to compare denoising
algorithm results on an image unless an author verifies that the original im-
ages were identical, which can take considerable effort. For this reason, we
hope the denoising community can adopt these images and these versions in
particular as a standard data set.

3 Noisy Images

DenoiseLab provides a set of 195 standard noisy images derived from the 13
original noise-free images. Each original image is corrupted with noise from
three different noise distributions using 5 different noise levels.

Although additive white Gaussian noise (AWGN) is often assumed to be
the only corruption mechanism in many denoising publications, this may not
be the case in real-world denoising applications [8]. Depending on the imag-
ing device and environmental conditions such as lighting level, the AWGN
model may poorly reflect the actual noise in the image and the noise may in-
stead be signal-dependent. Denoising algorithms designed for signal-independent
noise may perform poorly on images corrupted with signal-dependent noise.
It is interesting to test denoising algorithms on non-AWGN noise models
in order to see how successful they are at general denoising and if they are
very sensitive to the assumption of noise perfectly modeled by AWGN. Ad-
ditionally, DenoiseLab allows algorithms that are specifically designed for
signal-dependent noise to take advantage of knowledge of the particular noise
distribution that was used to corrupt an image.

For this section, let x(i) and y(i) be the pixels (ordered lexicographically)

1http://sipi.usc.edu/services/database/database.cgi?volume=misc
2http://sampl.ece.ohio-state.edu/database.htm
3http://decsai.ugr.es/cvg/dbimagenes/g512.php
4http://decsai.ugr.es/~javier/denoise/test_images/
5http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software

4



at location i ∈ Z, 1 ≤ i ≤ N of the original noise-free and noisy images,
respectively, where N is the number of pixels in an image. Note that the
standard test images were generated by rounding y(i) to the nearest integer
with clipping if necessary. Let x = 1

N

∑N
i=1 x(i) and σ2

x = 1
N

∑N
i=1(x(i)−x)2.

All of the noisy images were generated in a manner so that the following hold

E[x(i)− y(i)] = 0 for all i (1)

E[(x(i)− y(i))2] = σ2 (2)

where the expectation in (2 is taken over all i. Therefore, any image generated
using the same value of σ and a different noise distribution are in a sense
’equally-noisy.’ For each noise distribution, noisy images were generated
using σ ∈ {5, 10, 15, 20, 25} for each original noise-free image. The σ values
were chosen so that the noise spans the range from nearly imperceptible to
very strong. Descriptions of the statistics of the noisy images and motivation
for each noise distribution are provided below.

Additive White Gaussian Noise (AWGN)

For AWGN, the value of a pixel in the noisy image is given by y(i) =
x(i) + n(i) where n(i) is normal with mean 0 and variance σ2 and n(i) is
independent from x(j) and n(k) for ∀j, k where k 6= i. Often noise caused
from the electrical components in an imaging device during image capture
or transmission are modeled as AWGN.

Multiplicative White Gaussian Noise (MWGN)

For MWGN, the value of a pixel in the noisy image is given by y(i) = x(i)n(i)
where n(i) is normal with mean 1 and variance σ2

MWGN = σ2

σ2
x+x2 and n(i)

is independent from x(j) and n(k) for ∀j, k where k 6= i. The mean and
variance of n(i) were chosen in order to satisfy (1) and (2).

Multiplicative noise is common in many real-world images, and a number
of denoising algorithms have been created to deal with multiplicative noise
[9],[10],[11],[12]. Speckle noise is common for images derived from a coherent
imaging device such as radar, laser, sonar, or ultrasound. A multiplicative
noise model is most commonly used for speckle noise with the multiplica-
tive distribution being Gaussian, exponential, or Rayleigh depending on the
specific imaging device [8], [13].
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The noise is signal-dependent for the MWGN case. This causes the noise
in the brighter areas of an image to have a larger variance and appear more
noisy.

Poisson Noise

For Poisson noise, the value of a pixel in the noisy image is given by y(i) = ẏ(i)
λ

where

P (ẏ(i)) =
(λx(i))ẏ(i) exp (−λx(i))

ẏ(i)!

λ = x
σ2 and y(i) and x(j) are independent for i 6= j. The normalization from

ẏ(i) to y(i) and selection of λ are necessary in order to satisfy (1) and (2).
[8]

Poisson noise is common for images obtained in low-light conditions where
the arrival of photons is modeled by a shot noise following a Poisson distri-
bution. Examples of Poisson denoising methods can be found in [8] and
[14].

4 Information Available to Denoising Algo-

rithms

Although in real-world applications no knowledge about the original noise-
free image other than the noisy image realization is available to the denoiser,
in denoising experiments some knowledge is typically assumed about the
noisy distribution. This is justified by the fact that knowledge about the
imaging device and environment can determine which noise model to use
and heuristics exist to estimate the relevant constants for a noise distribution
from a noisy image. For the AWGN case, the actual value of σ is typically
known to the denoiser, which we allow in the proposed standard in addition to
always allowing the denoiser to know whether the noisy image was generated
from the AWGN, MWGN, or Poisson models.

For the MWGN and Poisson noise distributions, the corresponding con-
stants that define the distribution of the noisy images given the noise-free
images are σMWGN and λ, respectively. Since many denoising algorithms
assume an AWGN model, they require the corresponding σ value in order to
denoise the MWGN and Poisson noisy images. Other denoising algorithms
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that do not necessarily assume the AWGN model may prefer to have knowl-
edge of the value of σMWGN or λ instead of the corresponding value of σ.

Although the proposed standard could allow denoising algorithms to have
knowledge of both σ and σMWGN for MWGN noisy images or σ and λ for
Poisson noisy images, this would not only reveal knowledge of the corrupt-
ing noise distribution but also knowledge of values describing the original
noise-free distribution. For example, λ ∗ σ2 gives the overall mean of the
original noise-free image. For this reason, we allow denoising algorithms to
take advantage of knowledge of only one of the above parameters at a time.
Specifically, for MWGN noisy images the denoiser can use the value of either
σ or σMWGN , but not both. Similarly for Poisson noisy images and σ or λ.
Additionally, algorithms that choose to use knowledge of the value of σMWGN

or λ cannot attempt to discern the value of σ by using the fact that σ is a
multiple of 5 since this is not feasible in practice.

Denoising algorithms are not allowed to use any knowledge from the origi-
nal noise-free images such as for training an algorithm. The original noise-free
images are strictly for testing and no direct knowledge from them should be
used.

5 Perceptual Quality Evaluation

Motivation

Many authors of papers presenting denoising algorithms have compared the
performance of their algorithm to other algorithms based almost entirely
upon some L2 based norm such as mean squared error (MSE) or peak signal
to noise ratio (PSNR). Although error measures such as MSE and PSNR are
common in the denoising community, are simple and easy to compute, and
may lead to easily solvable optimization problems, they are not reflective of
the quality of images as perceived by the human visual system. For example,
adding a constant amount to all pixels in an image or scaling the contrast
of an image will result in images that have a high MSE (low PSNR) but
will seem nearly identical to the original picture as perceived by a human
observer.

Due to the poor performance of the MSE and PSNR for images that
are to be viewed by humans, authors perhaps also make some vague unsub-
stantiated subjective claim that the visual quality of their denoised images
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is superior to denoised images from other algorithms or that artifacts from
their algorithm are less disturbing. The community needs some standard ob-
jective and quantitative way of assessing the perceptual quality of denoised
images. Ultimately the best way to judge the perceptual quality of images
is by conducting an experiment where actual human subjects judge images
such as in [15]. Unfortunately such studies are prohibitively expensive, time-
consuming, and potentially dependent on the experimental setup such as
the lighting, viewing distance, and angle. The denoising community would
benefit greatly from an objective standard perceptual quality measurement
that can be calculated easily and can predict reasonably accurately how well
humans will judge the quality of denoised images.

SSIM Description

We propose the Structural SIMilarity (SSIM) index as the perceptual quality
measurement for denoised images [16]. Let X be an image, xi be the pixel
at location i, and xj be the set of pixels in a 11x11 window centered at
location j. Let the above notation hold for a second image, Y. The SSIM is a
measurement of the similarity between two 11x11 image neighborhoods. The
neighborhoods are weighted by a circular-symmetric Gaussian with standard
deviation 1.5 that is normalized to have a unit sum of 1. Let the weights
of the Gaussian distribution centered at location j be given by wj,i for i in
the 11x11 window centered at j. The estimates of the local statistics of the
image neighborhoods, xj and yj, required for the SSIM are given by:

µxj
=

∑
xi∈xj

wj,ixi

σxj
=


 ∑

xi∈xj

wj,i(xi − µxj
)2




1
2

σxyj
=

∑
xi∈xj
yi∈yj

wj,i(xi − µxj
)(yi − µyj

)

and similarily for µyj
and σyj

. Then, the SSIM between the two local image
neighborhoods is defined as

SSIM(xj,yj) = l(xj,yj)c(xj,yj)s(xj,yj)
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where

l(xj,yj) =
2µxj

µyj
+ C1

µ2
xj

+ µ2
yj

+ C1

c(xj,yj) =
2σxj

σyj
+ C2

σ2
xj

+ σ2
yj

+ C2

s(xj,yj) =
σxyj

+ C3

σxj
σyj

+ C3

(3)

are the luminance, contrast, and structural components, respectively. The
constants C1, C2, and C3 are included to avoid numerical instabilities in the
ratios. The luminance, contrast, and structural components penalize the
image neighborhoods for having different local means, variances, and joint
statistics, respectively.

The SSIM, luminance, contrast, and structural components all are sym-
metric, nonnegative, and bounded above by 1. The SSIM also has the prop-
erty of a unique maximum where SSIM(xj,yj) = 1 if and only if xj = yj.

Since an overall measure of perceptual similarity between images is de-
sired, the following definitions extend the above measures from small neigh-
borhoods to entire images:

MSSIM(X,Y ) =
1

M

M∑
j=1

SSIM(xj,yj)

MLuminance(X,Y ) =
1

M

M∑
j=1

l(xj,yj)

MContrast(X,Y ) =
1

M

M∑
j=1

c(xj,yj)

MStructure(X,Y ) =
1

M

M∑
j=1

s(xj,yj)

(4)

where M = (512 − 10)2 is the number of local neighborhoods in 512x512
images.
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Since the goal of denoising is to generate a denoised image that is as
close as possible to the original image, the similarity measurements above
are used with one image, say X, being the original noise-free image and the
other image, say Y , being a denoised image. In this manner, the SSIM index
acts as a full-reference quality assessment method. Therefore, the MSSIM
gives a measurement of how close the denoised image is to the original image
perceptually. The MLuminance, MContrast, and MStructure values give
measurements of how well the denoised image matches the original image
with respect to the local luminance, contrast, and correlation (structure),
respectively. In addition, the above measurements are all between 0 and 1
with a score of 1 being given only if the denoised image is exactly equivalent
to the original image.

DenoiseLab uses C1 = (0.01 ∗ 255)2, C2 = (0.03 ∗ 255)2, and C3 = C2/2
as recommended in [16]. DenoiseLab uses the software available at http:

//www.cns.nyu.edu/~lcv/ssim/ with only slight modification.

Reasons for Selecting SSIM

The following are reasons why the SSIM index was chosen as the best method
for perceptual quality measurement for denoising:

• The SSIM index has a high correlation with the mean opinion score
(MOS), which is determined experimentally with human observers.
The SSIM outperforms other state-of-the-art objective measures on a
number of measures of correspondence with MOS. The SSIM index also
has motivation in an understanding of the human visual system (HVS)
[16].

• The SSIM index gives a perceptual score between 0 and 1 to all images,
which gives a comparison to the upper limit of denoising and permits
averaging over multiple images to give an overall evaluation score for
typical images.

• In addition to the MSSIM value for a denoised image, the MLuminance,
MContrast, and MStructure values can be calculated to give a standard
measure of the local luminance, contrast, and structural quality of a
denoised image. These quantities can identify the relative strengths
and weaknesses of denoising algorithms.
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• The SSIM index produces perceptual quality images (each pixel is given
a value based on how well the neighborhood centered at that pixel
matches the original). In addition, similar images giving the local lu-
minance, contrast, and structure components can be generated. These
images can help determine where algorithms perform well or poorly in
a particular image.

• The SSIM index is based on a simple formula that only compares small
neighborhoods between two images unlike many bottom-up approaches
that depend on empirical measurements and global statistics of the im-
age. The simplicity can be incorporated into the design of new denois-
ing techniques that are (nearly) SSIM optimal.

• There are no underlying assumptions about image statistics in the
SSIM index that could favor a particular approach to denoising. For
instance, the perceptual quality measure proposed in [17] and the de-
noising algorithm proposed in [1] assume natural scene statistics follow
a Gaussian scale mixture in the wavelet domain.

The recent study [15] that was based on responses from human observers
assessed the perceptual quality of some state-of-the-art denoising schemes.
The 8 bit 512x512 barbara, goldhill, and face images with noise from an
AWGN model with σ = 15 were used. Although currently only three of the
algorithms from the study have been evaluated in DenoiseLab, the relative
ranking of these top algorithms with the SSIM index coincides perfectly for
the barbara and goldhill images. Once the other algorithms in the study
are evaluated in DenoiseLab, we will be able to make a stronger comparison
between the SSIM index and this study.

6 Conclusion

The standard data set and evaluation method proposed here has the potential
to assist the denoising community by providing a generally accepted method
of comparing algorithm performance. The standard encourages the evalua-
tion of algorithms over a large number of original noise-free images and three
different noise distributions. The proposed perceptual performance measure-
ment, the SSIM, offers a number of advantages over traditional MSE and
PSNR error measurements. In addition, the SSIM and standard as a whole
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enable researchers to identify images and image features where an algorithm
performs well or poorly. DenoiseLab provides a convenient way to perform
the evaluation and generate plots.

There are some valid criticisms of the standard presented here. Algorithm
performance is only evaluated on images that are 512x512 pixels. It is pos-
sible that the relative performance of algorithms will change for smaller or
larger images. Since only 13 original noise-free images are used, perhaps the
evaluation standard does not accurately predict the performance on a ’typ-
ical image’ especially when image statistics differ greatly from the images
in the standard. Although we would like to expand the standard to include
more original noise-free images, different sized images, and more noise dis-
tributions, we feel that this would increase the size of the noisy image data
set beyond a reasonable amount.

The proposed standard currently only contains gray-scale images. Al-
though many denoising algorithms for color images also have an associated
gray-scale algorithm and there are far fewer denoising algorithms for color
images, there still should be a similar standard for denoising algorithms for
color images. In the future, we may develop a similar standard for color
images.

References

[1] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, Image De-
noising using a Scale Mixture of Gaussians in the Wavelet Domain, IEEE
Transactions on Image Processing, vol. 12, no. 11, pp. 13381351, Nov.
2003.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ”Image Denoising
with Block-Matching and 3D Filtering,” Proc. SPIE Electronic Imaging:
Algorithms and Systems V, no. 6064A-30, Jan. 2006.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ”Image Denoising
by Sparse 3D Transform-Domain Collaborative Filtering,” IEEE Trans-
actions on Image Processing, Dec. 2006. (accepted)

[4] A. Foi, V. Katkovnik, and K. Egiazarian, ”Pointwise Shape-Adaptive
DCT for High-Quality Denoising and Deblocking of Grayscale and Color

12



Images,” IEEE Transactions on Image Processing, vol. 16, no. 5, pp.
1395-1411, May 2007.

[5] M. Elad and M. Aharon, ”Image Denoising via Learned Dictionaries
and Sparse Representation,” Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, vol. 1, pp. 895-900, Jun. 2006.

[6] M. Elad and M. Aharon, ”Image Denoising Via Sparse and Redundant
representations over Learned Dictionaries,” IEEE Transactions on Image
Processing, vol. 15, no. 12, pp. 3736-3745, Dec. 2006.

[7] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, ”The FERET Eval-
uation Methodology for Face-Recognition Algorithms,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp.
1090-1104, Oct. 2000.

[8] R. M. Rangayyan, M. Ciuc, and F. Faghih, ”Adaptive-Neighborhood
Filtering of Images Corrupted by Signal-Dependent Noise,” Applied Op-
tics, vol. 37, no. 20, pp. 4477-4487, Jul. 1998.

[9] Z. Long and N. H. Younan, ”Denoising of Images with Multiplicative
Noise Corruption,” Proc. European Signal Processing Conference, Sept.
2005.

[10] R. M. Rangayyan and A. Das, ”Filtering Multiplicative Noise in Images
using Adaptive Region-Based Statistics,” Journal of Electronic Imaging,
vol. 7, no. 1, pp. 222-230, Jan. 1998.

[11] K. Hirakawa and T. W. Parks, ”Image Denoising for Signal-Dependent
Noise,” Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Pro-
cessing, vol. 2, pp. 29-32, Mar. 2005.

[12] Y. Hawwar and A. Reza, ”Spatially Adaptive Multiplicative Noise Image
Denoising Technique,” IEEE Transactions on Image Processing, vol. 11,
no. 12, pp. 1397-1404, Dec. 2002.

[13] M. Kovaci, D. Isar, A. Isar, ”Denoising SAR Images,” International
Symposium on Signals, Circuits and Systems, vol. 1, pp. 281-284, Jul.
2003.

13



[14] X. Huang, A. C. Madoc, and A. D. Cheetham, ”Wavelet-Based Bayesian
Estimator for Poisson Noise Removal from Images,” Proc. International
Conference on Multimedia and Expo, vol. 1, pp. 593-596, Jul. 2003.

[15] E. Vansteenkiste, D. Van der Weken, W. Philips, and E. Kerre, ”Per-
ceived Image Quality Measurement of State-of-the-Art Noise Reduction
Schemes,” in Lecture Notes in Computer Science ACIVS, vol. 4179, pp.
114-126, Sept. 2006.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ”Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.

[17] H. R. Sheikh, A. C. Bovik, G. de Veciana, ”An Information Fidelity
Criterion for Image Quality Assessment Using Natural Scene Statistics,”
IEEE Transactions on Image Processing, vol. 14, no. 12, Dec. 2005.

14


